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Complete mathematical modeling of processes of inductional tempering in various 
inductors is performed on a computer. Using regularizing algorithms, the prob- 
lem of heat control and the problem of purposive control are solved. 

i. As is known, the method of mathematical modeling of physical and, in particular, 
technological processes is an effective means of studying the laws controlling them, or pre- 

dicting the results of the process as a function of the controlling parameters. This method 
involves the development of a mathematical model of the process reflecting its significant 
features and the performance of a numerical experiment on a computer, reproducing the whole 
process. 

Often, all the physical factors controlling a process are not known in advance. Then 
inverse and usually incorrect problems must be solved in order to develop a mathematical 
model of the process. In this case, an intrinsic part of the construction of the model is 
the development of stable algorithms, and the basis for this is the theory of regularization 
[i], the application of which to thermophysical problems has been developed in a series of 
works (e.g. [2]). 

In the present work, for the example of inductional tempering, the features of problems 
of modeling technological processes are elucidated. 

2. The process of inductional tempering of steel samples in an inductor carrying a vari- 
able current I = I(t)e -imt includes two phases: Heating of layers of the sample, beginning 

with the surface, to the temperature of complete austenitic conversion; and rapid cooling, 
performed by immersing the sample surface in a fast liquid flow. 

The main problem in developing a model of the first phase is to determine the law of 
variation of the current amplitude in the inductor I(t) so that the temperature conditions 

of the sample surface meet a definite requirement (i.e., T!s=~), ensuring the necessary 
heating. This is an inverse problem of control type. The a priori requirements on the con- 
ditions may be sufficiently rigorous, but "competence" [i] of the apparatus (i.e., the ex- 
istence of at least one appropriate control) is possible as a result of tolerance (i.e., 

llTls--~II<8) in the deviation of the surface conditions from those required. In turn, the 
uniqueness of the control is unimportant. It is important, however, that I(t) satisfy defin- 
ite conditions of practical realizability ](f)EK. 

As is known [i], "regularizing" algorithms are those which allow as accurate an approxi- 
mation to some unique solution of the problem as desired to be obtained, with a sufficiently 
small error of its input data. In control problems with "accurate" input data, the existence 
of any solution at all often cannot be guaranteed. At the same time, the problem is not 
stable even in this case -- no explicit algorithm leads to a realizable (and even physically 
meaningful) "solution." Algorithms leading to a solution with the necessary properties -- 
e.g., I(t)~K) -- and stability with respect to change in the input data will be called "con- 
ditionally regularizing" for the control problem. 

The development of a model for the second phase of tempering requires refinement of the 
heat-transfer law at the sample surface (because of the complexity of the physical processes 
associated with the given means of cooling). This is an inverse problem of the type of the 
interpretation of physical observation data (in the given case, above the surface temperature 
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Fig. i. Control of the heat3ng (magnetic field) for a "so- 
lenoidal" inductor. H, A/mm; t, sec. 

Fig. 2. Control of the heating for a "band" inductor~ 
I, kA. 
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Fig. 3. Inductor of "band" type: i) inductor busbars; 2) 
sample (R = 24 mm, L = 28 mm, a = 27 mm). 

Fig. 4. The temperature field for heating in a "band" in- 
ductor. The temperature at the surface: maximum (i), 
mean (2), minimum (3); (mean) temperature at r = 16.4 mm 
(4) and 8.8 mm (5); temperature at the center of the sample 
(6). 

of the sample) solved in [3], and we will not dwell on the corresponding results here. For 
this problem, the uniqueness of the solution (with accurate input data) is significant, since 
identification of the model with the real object would otherwise be impossible. 

If a model of the two phases of induction is constructed, then one further inverse prob- 
lem may be solved by mathematical experiment -- the determination of certain numerical param- 
eters of the operating conditions in which the greatest tempering effect is obtained. This 
problem also permits a mathematical formulation as a problem of optimizing some object func- 
tional. Since the problem of the character of the controlling function is solved in the 
course of the experiment, regularizing or conditionally regularizing algorithms are a ne- 
cessary element of the optimization complex. If such a complex is constructed, then pro- 
grammatic control of the technological process may be realized. 

3. For the problem of controlling heating under tempering, a two-dimensional model is 
considered (a sample of "infinite" length), and correspondingly it is assumed that, regard- 
less of its construction, the inductor creates a field with one component (H or E) parallel 
to the sample axis. The temperature field in the sample is described by the equation 

~T 
div (k (T) grad T) q- 0. t2 o (T) [jl z = c (T) p (T) - - ,  

8t 

O < r < R ,  O ~ , : p < : 2 , ~ ,  O < < t ~ t  F, ( 1 )  

where k(T), c(T), p(T), o(T) are functions of the temperature T; j is the mean value over 
the period of the unique component of the current density in the sample, and is a function 
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of l(t): j=~(r, % I(O); its value is determ&ned by a stream of Maxwell equations with addi- 
tional conditions corresponding to the type of inductor, so that the temperature field- 
at each I(t) -- is ultimately determined by a system of nonlinear partial differential equa- 
tions. This system is closed by means of additional conditions on the temperature, field 

T[t=o= To, l imrk(Y)  OT = O, - - k ( Y )  OT = ho(T- -  To)}~=n. (2) 
0--7- 

Then at each l(t) the temperature field may be calculated on a computer using difference 
schemes [4], and thus the operator P is algorithmically specified 

I 
7aT(/~, % t)dq:,, (3) 

0 

which determines the behavior of the mean temperature at the sample surface. Below, "local" 
operators will also be considered: ~s(t, I(t)), tCAs------[Is-1, ts], defined in contrast to ~, 

by the condition TJ~ is_, = T(ts-l, r, ~) for any particular segment AsC[0, /F]" 

The inverse problem of finding I(t) with specific requirements regarding the temperature 
conditions at the boundary may be "regularized" on the basis of varions a priori constraints 
on the desired function, corresponding to the control possibilities. The basis requirement 
on the surface temperature conditions is the provision of two stages of heating: fast (e.g., 
linear) heating to T F % 900~ exceeding the temperature of complete austenitic conversion 
(Ac3 ~ 790~ and isothermal holding of the surface at T = T F. Of course there is a toler- 
ance 6 in the temperature deviations of the surface from the required value (6 w 10~ which 
will be taken into account in the mean-square approximation. 

Problem i. To find the piecewise-monotonic control I(t) satisfying the condition 

!F 
92(~I s, @)_~.~; [~]'(f, [(t))--q~(t)l~dt~62, (4) 

0 

where @(t) is the already-specified surface temperature. The conditionally regularizing 
algorithm for solving this problem is given by the formulas [5] 

tk  o,, 

Ik:min(I--I~ /C]('O~--fll: ~i [u/hfr 1)--r 
l h - i  

17 9 

k =  1, 2, n, %" 6 ~ = 6  ~, (5) 
h = l  

o where  Ik_ 1 i s  t he  s o l u t i o n  o f  t he  p rob lem in  Eq. (5) i n  t he  p r e c e d i n g  s egmen t  ( i n  the  c a l c u -  
l a t i o n s ,  n ~ 300) .  An example o f  t he  s o l u t i o n  o f  t he  p rob l em u s i n g  t h i s  a l g o r i t h m  i s  shown 
in  F ig .  1 f o r  a " s o l e n o i d a l "  i n d u c t o r  c r e a t i n g  a l o n g i t u d i n a l  m a g n e t i c  f i e l d  (] = ]~, CD ~-OHm~Or). 

Prob lem 2. a) For  t he  s t a g e  o f  r a p i d  h e a t i n g ,  to  f i n d  the  c o n s t a n t  v a l u e  o f  the  c u r -  
r e n t  I such  t h a t  t h e  mean s u r f a c e  t e m p e r a t u r e  i n  Eq. (3) t a k e s  t h e  s p e c i f i e d  v a l u e  T F a t  
t ime  t = t i t ;  b) f o r  t h e  s t a g e  of  i s o t h e r m a l  h o l d i n g ,  t H ~ t ~ tF ,  to  f i n d  t h e  c o n t r o l  I ( t ) .  
I n  F i g .  2, t h e  c o n t r o l  found [6] f o r  a n o t h e r  t y p e  of  i n d u c t o r  (F ig .  3) i s  shown. In  t h i s  
case the sample rotates about its axis in the transverse magnetic field of the inductor, de- 
pending on the two spatial variables (r, (f). Now j = J z = OEz, and the function ~ is de- 
termined by the solution of the problem of inductor-field diffraction in the cylinder. 

If f(I) e ~(tH, I) is a functional of I, then problem 2a reduces to the equation: 
f(1) = TF, IGE I. It is conditionally correct [7, i] in view of the monotonicity of f(1), 
and is solved using the chordal method of [8]. Problem 2b is analogous to Eq. (4), and is 
solved by means of Eq. (5). The behavior of the temperature at the surface and axis of the 
sample is shown in Fig. 4. Such diagrams may serve, in particular, for the selection of heat- 
ing times that ensure sample heating which is relatively uniform with respect to cp. 

Problem 3. On the basis of the solution of problem 2a, to find a "multistep" control 
with a minimum number of elements m for the stage of isothermal holding. 

The mathematical formulation of this problem, e.g., for a "band" inductor (Fig. 3), is 
as follows: to find tk, dividing the segment [tH, tF] and the values of I k at ~CAk from the 
condition 
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"Pulsed" control of the heating in a "band" induc- 

Surface temperature with "pulsed" control: I) maximum; 
2) mean; 3) minimum. 
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Fig. 7. Tempered-layer thick- 
ness for a "band" inductor: I) 
maximum; 2) minimum. A, mm. 

M = rain n (I  (t)) : I if) E Wo - -  { {IL, t E A~, k = I . . . . .  m}, 

0~<i~<M, p~(~, ~)~6~} (6) 

Suppose tha t  the " con t i nuous "  c o n t r o l  s a t i s f y i n g  the c o n d i t i o n  in  Eq. (4) has a l ready  been 
found using Eq. (5 ) .  Then the problem in  Eq. (6) reduces to the approx imat ion  of  the spe- 
c i f i c  continuous function by some multistep function with a minimum number of elemenLs but 
such that the condition p20F IF)~62is satisfied. The search algorithm is described in [9], 
and we will not consider it here. The control found is also shown in Fig. 2 by a continuous 
curve, together with other possible controls (the steps -- dashed curves) obtained by direct 
sequential search for pairs (Ij, tj), j = !, 2 ..... s -- 1 under the condition maxi~(t,f )- 

Problem 4. To find a "pulsed" control for the stage of isothermal holding. Let Io be 
the current found for the stage of rapid heating and K N be a set of piecewise-constant func- 
tions that correspond to switching on the current Io at time t2m and switching off at t2m§ 

The division {A k) with the minimum possible number of elements N will be sought, such that 
the minimum and maximum surface temperatures do not fall outside the range of 6n: 

rain N (I (t)) : I (t) C V~,~ 

~ { / ( t ) E K N ,  max max IT(R, m, t ) - -~ : !~<8~} .  
tH~[~t F o<~2~ 

The algorithm for solving this problem is similar to the second variant of the search for a 
solution of the problem in Eq. (3), the difference being that what is selected is, in turn: 
a) pairs (Io, t s) and b) pairs (0, ts+1), such that the values of the boundary temperature 
do not fall outside the tolerance 6. 

The selected pulsed conditions (6~__25~ are shown in Fig. 5, and the corresponding 
temperature field is shown in Fig. 6. The results described above evidently allow the re- 
quired control conditions for sample heating to be selected. The problem of determining the 
heat-transfer law at the surface with rapid cooling was solved in [3] using the algorithm 
in Eq. (5) .  
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4. The final step is to consider the results of complete modeling of thetempering 
process obtained with a fixed heat-transfer law Ho = i00,000 kcal/m~'h,~ characterizing 
the thickness of the tempered [3] surface layer A. The value of A is determined by intro- 
ducing thermokinetic diagrams into the computer [i0] and comparing them with the temperature 
curves of cooling (this comparison is completely automated [3]). 

Nomograms of the dependence of A on the time of isothermal holding for a band inductor 
are shown in Fig. 7. In view of the nonuniformity of heating with respect to T, two curves 
corresponding to the maximum and minimum layer thickness with respect to ~ are shown. It 
may be seen that: a) After a certain holding time, the depth of tempering reaches a value 
that is a maximum and is uniform in T; b) increases in holding time righ t up to through- 
heating of the sample does not lead to any benefit in terms of the tempered-layer thickness. 
This result of the competition of two fluxes -- cooling from the surface and warming (from 
within the rod in deep heating) -- cannot be predicted without mathematical modeling, at least 
qualitatively. The results obtained have been introduced at the AVTO-ZILa factory, where the 
conditions of tempering samples of the given type have been corrected. At the department 
of mathematics in the physics faculty of Moscow State University, packets of programs solving 
the above-considered complex of programs on a computer have been developed. 
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